POTENTIAL RISK OF INVESTIGATED DRUGS FOR THE TREATMENT OF COVID-19: DRUGS INTERACTIONS

José Virgulino de Oliveira Lima, Gisele Lopes Cavalcante, Nayara Soares de Mendonça Braga, Alan Rodrigues da Silva, Tiago Medeiros da Silva, Bárbara Pereira Gomes, Felipe da Silva Carvalho, Salomão Mendes Amaral, Demetrius Lucena Sampaio

Resumo


Introduction: The coronavirus causes infections in lower respiratory tract and with preceding cases by the Coronavirus of the Severe Acute Respiratory Syndrome (SARS-CoV) and by the virus of the Middle East Respiratory Syndrome (MERS-CoV). It was aimed to investigate the potential interactions, of severe and moderate degrees, of the drugs tested in the treatment of COVID-19 with other drugs and with diseases. Outline: Characterizes itself as a documentary research that use the data base Drugs® for obtaining the cross information of the data banks with another drugs, according to articles of periodicals indexed in the great searchers PubMed, Science Direct and BVS. For the determination of the drug interaction, there were used only the data which had at least “good documentation” and only the interactions “expressly contraindicated”, “major” and “moderate”, the mild interactions were omitted. Results: The hydroxychloroquine and the chloroquine are associated with many drug interactions and with drugs, along to the azithromycin, which also has a high degree of risks. However, the nitazoxanide, the ivermectin and the oseltamivir are in the opposite direction, with small drug interactions and low risks to the treatment safety. The monoclonal antibodies and the antiretrovirals have balanced risk-benefit relation. Implications: Most of the currently investigated drugs in the treatment of COVID-19 show several drug interactions and interactions with pre-existing diseases.


Palavras-chave


Coronavirus; Replicação viral; Interações medicamentosas.

Texto completo:

PDF (English) PDF

Referências


Sun D, Li H, Lu XX, Xiao H, Ren J, Zhang FR, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr [Internet]. 2020 Jun [cited 12 Mar 2020]; 16(3):251–259. Available from:

http://dx.doi.org/10.1007/s12519-020-00354-4

Duan YJ, Liu Q, Zhao SQ, Huang F, Ren L, Liu L, et al. The Trial of Chloroquine in the Treatment of Corona Virus Disease 2019 (COVID-19) and Its Research Progress in Forensic Toxicology. Fa yi xue za zhi [Internet]. 2020; Apr [cited 11 Mar 2020]; 36(2):157–163. Available from: http://dx.doi.org/10.12116/j.issn.1004-5619.2020.02.001

Lythgoe MP, Middleton P. Ongoing Clinical Trials for the Management of the COVID 19 Pandemic. Trends Pharmacol Sci [Internet]. 2020 Jun [cited 11 Mar 2020]; 41(6):363-382. Available from: http://dx.doi.org/10.1016/j.tips.2020.03.006

Organização Mundial da Saúde. Vigilância mundial da COVID-19 causada por infecção humana pelo vírus COVID-19. Brasília: OMS; 2020. Available from:

https://apps.who.int/iris/bitstream/handle/10665/331231/WHO-2019-nCoV-SurveillanceGuidance-2020.4-por.pdf?sequence=33&isAllowed=y

Ar Gouilh M, Puechmaille SJ, Diancourt L, Vandenbogaert M, Serra-Cobo J, Lopez Roïg M, et al. SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world. Virology [Internet]. 2018 Apr [cited 11 Mar 2020]; 517:88–97. Available from: doi:10.12726/j.issn.1002-3719.2020.02.001

Ran L, Chen X, Wang Y, Wu W, Zhang L, Tan X. Risk Factors of Healthcare Workers With Corona Virus Disease 2019: A Retrospective Cohort Study in a Designated Hospital of Wuhan in China. Clin Infect Dis [Internet]. 2020. Mar [cited 2020 Jun 8]. Available from: http://dx.doi.org/10.1093/cid/ciaa287. [Ahead of print].

Li Y, Zhao R, Zheng S, Chen X, Wang J, Sheng X, et al. Lack of Vertical Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, China. Emerg Infect Dis [Internet]. 2020 Jun [cited 11 Mar 2020]; 26(6):1335–1336. Available from:

http://dx.doi.org/10.3201/eid2606.200287

Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends [Internet]. 2020 Mar [cited 11 Mar 2020]; 14(1):72–73. Available from:

http://dx.doi.org/10.5582/BST.2020.01047

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Vol. 20, Nature Reviews Immunology. Nat Rev Immunol [Internet]. 2020 Jun [cited 11 Mar 2020]; 20(6):363–374. Available from:

http://dx.doi.org/10.1038/s41577-020-0311-8

Million M, Lagier JC, Gautret P, Colson P, Fournier PE, et al. Early Treatment of COVID-19 Patients With Hydroxychloroquine and Azithromycin: A Retrospective Analysis of 1061 Cases in Marseille, France. Travel Med Infect Dis [Internet]. 2020 May Jun [cited 11 Mar 2020]; 35:101738. Available from: http://dx.doi.org/10.1016/j.tmaid.2020.101738

Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect [Internet]. 2020 Jun [cited 11 Mar 2020]; 50(4):384–398. Available from: http://dx.doi.org/10.7792/BST.2020.03947

Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care [Internet]. 2020 Jun [cited 11 Mar 2020]; 57:279–283. Available from:

http://dx.doi.org/10.8392/BST.2020.08637

Saleh M, Gabriels J, Chang D, Kim BS, Mansoor A, Mahmood E, et al. The Effect of Chloroquine, Hydroxychloroquine and Azithromycin on the Corrected QT Interval in Patients with SARS-CoV-2 Infection. Circ Arrhythm Electrophysiol [Internet]. 2020 Apr [cited 11 Mar 2020]; 13(6):1–12. Available from: http://dx.doi.org/10.8762/BST.2020.07397

Euwema MS, Swanson TJ. Deadly Single Dose Agents. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28722879

Radner H, Ramiro S, Buchbinder R, Landewé RB, van der Heijde D, Aletaha D. Pain management for inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis and other spondyloarthritis) and gastrointestinal or liver comorbidity. Cochrane Database Syst Rev [Internet]. 2012 Jan [cited 11 Mar 2020]; 1:1–15. Available from: http://dx.doi.org/10.4402/BST.2020.07539

Van der Heijden EHM, Hartgring SAY, Kruize AA, Radstake TRDJ, van Roon JAG. Additive immunosuppressive effect of leflunomide and hydroxychloroquine supports rationale for combination therapy for Sjögren’s syndrome. Expert Rev Clin Immunol [Internet]. 2019 Jul [cited 11 Mar 2020]; 15(7):801–8. Available from: http://dx.doi.org/10.8754/BST.2020.09894

Liu D, Li L, Wu X, Zheng D, Wang J, Yang L, et al. Pregnancy and Perinatal Outcomes of Women With Coronavirus Disease (COVID-19) Pneumonia: A Preliminary Analysis. AJR Am J Roentgenol Internet]. 2020 Mar [cited 11 Mar 2020]; 1–6. Available from: http://dx.doi.org/10.7872/BST.2020.08867

Naksuk N, Lazar S, Peeraphatdit TB. Cardiac safety of off-label COVID-19 drug therapy: a review and proposed monitoring protocol. Eur Heart J Acute Cardiovasc Care [Internet]. 2020 May [cited 11 Mar 2020]; 9(3):215–221. Available from:

http://dx.doi.org/10.6633/BST.2020.08673

Gérard A, Romani S, Fresse A, Viard D, Parassol N, Granvuillemin A, et al. “Off label” use of hydroxychloroquine, azithromycin, lopinavir-ritonavir and chloroquine in COVID-19: A survey of cardiac adverse drug reactions by the French Network of Pharmacovigilance Centers. Therapies [Internet]. 2020 May [cited 11 Mar 2020]; 75(4):371–379. Available from: http://dx.doi.org/10.9233/BST.2020.00923

Akhmerov A, Marbán E. COVID-19 and the Heart. Circ Res [Internet]. 2020 May [cited 11 Mar 2020]; 126(10):1443–1455. Available from: http://dx.doi.org/10.1161/CIRCRESAHA.120.317055

Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID-19. Vol. 31, Journal of Cardiovascular Electrophysiology. Blackwell Publishing Inc [Internet]. Jan [cited 11 Mar 2020]; 31(5):1003–1008. Available from: http://dx.doi.org/10.7832/BST.2020.30982

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res [Internet]. 2020 Mar [cited 11 Mar 2020]; 30(3):269–271. Available from: http://dx.doi.org/10.1038/s41422-020-0282-0

Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol [Internet]. 2020 Jul [cited 11 Mar 2020]; 92(7):726–730. Available from:

http://dx.doi.org/10.8734/eid7834.097483

Patel AB, Verma A. COVID-19 and Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: What Is the Evidence? JAMA [Internet]. 2020 May [cited 11 Mar 2020]; 323(18):1769–1770. Available from:

http://dx.doi.org/10.7734/eid9843.098474

Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Sevestre J, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis [Internet]. 2020 Mar [cited 11 Mar 2020]; 34:1–12. Available from: http://dx.doi.org/10.8744/eid9833.200453

Juurlink DN. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. CMAJ [Internet]. 2020 Apr [cited 11 Mar 2020]; 192(17):450–453. Available from: http://dx.doi.org/10.8643/eid7774.293748

Ray WA, Murray KT, Hall K, Arbogast PG, Stein CM. Azithromycin and the risk of cardiovascular death. N Engl J Med [Internet]. 2012 May [cited 11 Mar 2020]; 366(20):1881–90. Available from: http://dx.doi.org/10.8934/eid2694.984287

Lu ZK, Yuan J, Li M, Sutton SS, Rao GA, Jacob S, et al. Cardiac risks associated with antibiotics: Azithromycin and levofloxacin. Expert Opin Drug Saf [Internet]. 2015 Feb [cited 11 Mar 2020]; 14(2):295–303. Available from:

http://dx.doi.org/10.5647/eid9847.783944

Javelot H, El-Hage W, Meyer G, Becker G, Michel B, Hingray C. COVID-19 and (hydroxy)chloroquine-Azithromycin combination: Should we take the risk for our patients? Br J Clin Pharmacol [Internet]. 2020 Jun [cited 11 Mar 2020]; 86(6):1176–1177. Available from: http://dx.doi.org/10.8743/eid8747.208337

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet [Internet]. 2020 Mar [cited 11 Mar 2020]; 395(10229):1054–62. Available from: http://dx.doi.org/10.6374/err3324.082637

Funck-Brentano C, Salem JE, Nguyen LS, Drici MD, Roden DM. Response to the editorial “COVID-19 in patients with cardiovascular diseases”: COVID-19 treatment with hydroxychloroquine or chloroquine and azithromycin: A potential risk of Torsades de Pointes. Arch Cardiovasc Dis [Internet]. 2020 May [cited 11 Mar 2020]; 113(5):367–368. Available from: http://dx.doi.org/10.3290/ehr0923.674934

A Beccara L, Pacioni C, Ponton S, Francavilla S, Cuzzoli A. Arterial Mesenteric Thrombosis as a Complication of SARS-CoV-2 Infection. Eur J case reports Intern Med [Internet]. 2020 [cited 2020 Jun 8]; 7(5):001690. Available from:

http://dx.doi.org/10.12890/2020_001690

Das BK. Azithromycin induced hepatocellular toxicity and hepatic encephalopathy in asymptomatic dilated cardiomyopathy. Indian J Pharmacol [Internet]. 2011 Nov [cited 2020 Jun 8]; 43(6):736–737. Available from: http://dx.doi.org/10.3784/erd8923.200478

Dang W, Xu L, Ma B, Chen S, Yin Y, Chang KO, et al. Nitazoxanide inhibits human norovirus replication and synergizes with ribavirin by activation of cellular antiviral response. Antimicrob Agents Chemother [Internet]. 2018 Nov [cited 2020 Jun 8]; 62(11):1–18. Available from: http://dx.doi.org/10.8943/jur5647.357922

Rossignol JF. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral Res [Internet]. 2014 Oct [cited 2020 Jun 8]; 110:94–103. Available from: http://dx.doi.org/10.0981/hjj4563.543674

Sede M, Laufer N, Ojeda D, Gun A, Cahn P, Quarleri J. Analysis of sequences of hepatitis C virus NS5A genotype 1 in HIV-coinfected patients with a null response to nitazoxanide or peg-interferon plus ribavirin. Arch Virol [Internet]. 2013 Sep [cited 2020 Jun 8]; 158(9):1907–1915. Available from: http://dx.doi.org/10.9844/eig4563.201033

Brasileira F. Agência Nacional de Vigilância Sanitária. Available from: http://portal.anvisa.gov.br/

Haubrich K, Gantt S, Blydt-Hansen T. Successful treatment of chronic norovirus gastroenteritis with nitazoxanide in a pediatric kidney transplant recipient. Pediatr Transplant [Internet]. 2018 Jun [cited 2020 Jun 8]; 22(4):1–12. Available from:

http://dx.doi.org/10.8833/eud4528.962834

Elaidy SM, Hussain MA, El-Kherbetawy MK. Time-dependent therapeutic roles of nitazoxanide on high-fat diet/streptozotocin-induced diabetes in rats: Effects on hepatic peroxisome proliferator-activated receptor-gamma receptors. Can J Physiol Pharmacol [Internet]. 2018 Aug [cited 2020 Jun 8]; 96(5):485–497. Available from: http://dx.doi.org/10.6733/eui7833.904954

Chaccour C, Hammann F, Rabinovich NR. Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. Malar J [Internet]. 2017 Apr [cited 2020 Jun 8]; 16(1):161. Available from:

http://dx.doi.org/10.8844/ehg9830.689224

Van Der Laan LE, Garcia-Prats AJ, Simon Schaaf H, Tikiso T, Wiesner L, De Kock M, et al. Pharmacokinetics and drug-drug interactions of lopinavir-ritonavir administered with first- and second-line antituberculosis drugs in HIV-infected children treated for multidrug-resistant tuberculosis. Antimicrob Agents Chemother [Internet]. 2018 Feb [cited 2020 Jun 8]; 62(2):1–12. Available from:

http://dx.doi.org/10.8932/ehr9982.893440

Birbeck GL, French JA, Perucca E, Simpson DM, Fraimow H, George JM, et al. Antiepileptic drug selection for people with HIV/AIDS: Evidence-based guidelines from the ILAE and AAN. Epilepsia [Internet]. 2012 Jan [cited 2020 Jun 8]; 53(1):207–214. Available from: http://dx.doi.org/10.8743/ehr6337.455533

Pal R, Bhadada SK. COVID-19 and diabetes mellitus: An unholy interaction of two pandemics. Diabetes Metab Syndr [Internet]. 2020 Jul [cited 2020 Jun 8]; 14(4):513–517. Available from: http://dx.doi.org/10.6783/eig8833.811233

Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol [Internet]. 2019 Dec [cited 2020 Jun 8]; 94(5):1–19. Available from: http://dx.doi.org/10.1128/JVI.02015-19

Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol [Internet]. 2020 Feb [cited 2020 Jun 8]. Available from:

http://dx.doi.org/10.3280/ehr0933.664930 [Ahead of print].

Saghazadeh A, Rezaei N. Towards treatment planning of COVID-19: Rationale and hypothesis for the use of multiple immunosuppressive agents: Anti-antibodies, immunoglobulins, and corticosteroids. Int Immunopharmacol [Internet]. 2020 Jul [cited 2020 Jun 8]; 84:115. Available from: http://dx.doi.org/10.3250/ehr0103.670933

Fontana F, Alfano G, Mori G, Amurri A, Lorenzo T, Ballestri M, et al. COVID-19 pneumonia in a kidney transplant recipient successfully treated with Tocilizumab and Hydroxychloroquine. Am J Transplant [Internet]. 2020 Apr [cited 2020 Jun 8]; 20(7):1902–1906. Available from: http://dx.doi.org/10.8930/ehr0103.600754

Xu C-Y, Lu S-D, Ye X, Cao M-Y, Xu G-D, Yu Q, et al. Combined Treatment of Tocilizumab and Chloroquine on Severe COVID-19: A Case Report. QJM [Internet]. 2020 May [cited 2020 Jun 8]; 1:15. Available from: http://dx.doi.org/10.1093/qjmed/hcaa153

Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci [Internet]. 2020 Apr [cited 2020 Jun 8]; 50(SI-1):611–619. Available from: http://dx.doi.org/10.7433/ehr8843.44478

Patrì A, Fabbrocini G. Hydroxychloroquine and ivermectin: A synergistic combination for COVID-19 chemoprophylaxis and treatment? J Am Acad Dermatol [Internet]. 2020 Jun [cited 2020 Jun 8]; 82(6): e221. Available from: http://dx.doi.org/10.4657/eir1352.468086

Falavigna M, Colpani V, Stein C, Cesar Pontes Azevedo L, Maria Bagattini A, Vilela de Brito G, et al. Diretrizes para o Tratamento Farmacológico da COVID-19. Consenso da Associação de Medicina Intensiva Brasileira, da Sociedade Brasileira de Infectologia e da Sociedade Brasileira de Pneumologia e Tisiologia. Rev Bras Ter Intensiva [Internet]. 2020 Sep [cited 2020 Jun 8]; 32(2):1–74. Available from: http://dx.doi.org/10.8073/ehr8649.102938

Pepperrell T, Pilkington V, Owen A, Wang J, Hill AM. Review of safety and minimum pricing of nitazoxanide for potential treatment of COVID-19. J Virus Erad [Internet]. 2020 Apr [cited 2020 Jun 8]; 6(2): 52–60. Available from: http://dx.doi.org/10.9457/ejr9846.600103

Malosh RE, Martin ET, Heikkinen T, Brooks WA, Whitley RJ, Monto AS. Efficacy and Safety of Oseltamivir in Children: Systematic Review and Individual Patient Data Meta analysis of Randomized Controlled Trials. Clin Infect Dis [Internet]. 2018 May [cited 2020 Jun 8]; 66(10):1492–1500. Available from: http://dx.doi.org/10.1093/cid/cix1040




DOI: https://doi.org/10.26694/repis.v6i0.10829

Apontamentos

  • Não há apontamentos.


Bases/Indexadores:

Internacionais: CuidenIndex Copernicus InternationalResearch BibleLatindexCrossRefScholar Google; REDIB; PKP Index; DOAJ; MIAR; Biblioteca Virtual em Saúde (BVS); BDEnf.

Nacionais: DiadorimIBICTSumarios.orgLIVRE; periodicos CAPES.

REPIS is available in: Publons

ISSN: 2446-7901